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1. Summary
A pressing challenge over the next decade is to produce and maintain software and hardware sys-
tems with fewer defects and more resilience to attack. Defects and vulnerabilities are reported so
rapidly that programs routinely ship with known bugs, and even security bugs take 28 days, on
average, to fix [1]. Software maintenance accounts for over $70 billion per year and is focused on
repairing defects [2].

The work partially supported by this award aimed to reduce the time and effort gaps between
finding and fixing software defects by improving a technique to automatically repair program bugs.
The work improved a method for repairing defects in legacy applications through evolutionary
computation and program analysis [3]. In this approach, no special coding practices are required.
Instead, once a bug has been discovered, evolutionary algorithms evolve program variants until
one is found that avoids the defect in question while retaining required functionality. Standard
test cases are used to represent the fault and to encode program requirements. The improvement
focused on two areas:

1. We investigated techniques for powerful and efficient specification inference. While auto-
mated program repair does not require formal specifications, they can reduce repair times,
increase repair success, and improve confidence in finals repairs. Our primary research thrust
in this area developed the first technique for discovering nonlinear polynomial and linear
array invariants and was published in the International Conference on Software Engineer-
ing [4]. In addition, we developed a technique for discovering common software interface
usage patterns, another form of specification. In a separately-funded human study involving
over 150 participants, 82% of our specifications were found to be at least as good as human-
written instances and 94% were strictly preferred to previous tool-assisted approaches (also
published in the International Conference on Software Engineering [5]).

2. We extended previous work to repair programs in many languages and paradigms, in-
cluding embedded software. Demonstrating applicability to other languages broadens the
utility of automated program repair. We have repaired defects in programs written in five
functional languages (LISP, Haskell, Ocaml, Clean, Scheme), one stack language (Forth),
six object-oriented languages (Ada, Basic, C++, C#, Eiffel, Sather), and three imperative
languages (Algol, BCPL, Fortran) beyond C. In addition, we targeted assembly language
and ELF binaries for both ARM and x86 processors. Using new program representations
and fault localization approaches, we observed a decrease of 68% in memory and 95% in
disk space requirements, allowing program repair to scale to resource-constrained environ-
ments, as well as a 62% decrease in repair time compared to source-level approaches. This
work has been published in the International Conference on Automated Software Engineer-
ing [6].

Overall, the work associated with this award is the first step toward making automated program
repair, a promising technique for server-side C-program repair, viable for embedded devices, a
large and important class of systems.

1
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2. Introduction
Software bugs are ubiquitous, and fixing them remains a difficult, time-consuming, and manual
process. Some reports place software maintenance, traditionally defined as any modification made
on a system after its delivery, at 90% of the total cost of a typical software project [7, 8]. Modifying
existing code, repairing defects, and otherwise evolving software are major parts of those costs [9].
The number of outstanding software defects typically exceeds the resources available to address
them [10]. Mature software projects are forced to ship with both known and unknown bugs [11]
because they lack the development resources to deal with every defect. For example, in 2005, one
Mozilla developer claimed that, “everyday, almost 300 bugs appear . . . far too much for only the
Mozilla programmers to handle” [12, p. 363]. On the Mozilla project between 2002 and 2006, half
of all fixed bugs took developers over 29 days each to fix [13]. This trend is particularly troubling
in critical code: in 2006, it took 28 days on average for maintainers to develop fixes for security
defects [1]. In a 2008 FBI survey of over 500 large firms, the average annual cost of computer
security defects alone was $289,000 [14, p.16].

In light of this problem, many companies have begun offering bug bounties to outside devel-
opers, paying for candidate repairs. Well-known companies such as Mozilla1 and Google2 offer
significant rewards for security fixes, with bounties raising to thousands of dollars in “bidding
wars.”3

Although security bugs command the highest prices, more wide-ranging bounties are avail-
able. Consider Tarsnap.com,4 an online backup provider. Over a four-month period, Tarsnap paid
$1,265 for fixes for issues ranging from cosmetic errors (e.g., typos in source code comments), to
general software engineering mistakes (e.g., data corruption), to security vulnerabilities. Of the
approximately 200 candidate patches submitted to claim various bounties, about 125 addressed
spelling mistakes or style concerns, while about 75 addressed more serious issues, classified as
“harmless” (63) or “minor” (11). One issue was classified as “major.” Developers at Tarsnap
confirmed corrections by manually evaluating all submitted patches. If we treat the 75 non-trivial
repairs as true positives (38%) and the 125 trivial reports as overhead, Tarsnap paid an average of
$17 for each non-trivial repair and received one about every 40 hours. Despite the facts that the
bounty pays a small amount even for reports that do not result in a usable patch and that about 84%
of all non-trivial submissions fixed “harmless” bugs, the final analysis was: “Worth the money?
Every penny.”5

Bug bounties suggest that the need for repairs is so pressing that companies are willing to
pay for outsourced candidate patches even though repairs must be manually reviewed, most are
rejected, and most accepted repairs are for low-priority bugs. These examples also suggest that

1http://www.mozilla.org/security/bug-bounty.html $3,000/bug
2http://blog.chromium.org/2010/01/encouraging-more-chromium-security.html

$500/bug
3http://www.computerworld.com/s/article/9179538/Google_calls_raises_Mozilla_

s_bug_bounty_for_Chrome_flaws
4http://www.tarsnap.com/bugbounty.html
5http://www.daemonology.net/blog/2011-08-26-1265-dollars-of-tarsnap

-bugs.html
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relevant success metrics for a repair scheme include the fraction of queries that produce code
patches, monetary cost, and wall-clock time cost. In the work partially supported by this award we
present an automated approach to program repair with a use case similar to that of the outsourced
“bug bounty hunters.” The method is powerful enough to fix over half of the defects it tackles, and
we evaluate it using these and other metrics.

Until recently, most debugging approaches were manual and ad hoc. This work focused on
a generic approach to automated software repair for security and software engineering defects,
demonstrated most convincingly at the source level, but also applicable to other levels of the soft-
ware stack. Our approach applies to off-the-shelf legacy applications without requiring formal
specifications, program annotations or special coding practices. Once a program fault is discov-
ered, we use evolutionary algorithms to search through program variants until one is found that
both retains required functionality and avoids the defect. Standard test cases encode program re-
quirements. After a successful repair has been discovered, it can be presented to developers for
validation or applied to the program directly.

We have extended our technique’s level of automation and its support for more realistic pro-
grams and defects. We wish to minimize human involvement in the repair loop, as well as targeting
software on embedded devices, such as smartphones. Embedded failures have both civilian and
military implications, ranging from lawsuits [15] to insurgents hacking Predator drone feeds [16]).

Ultimately, we have used our technique to repair over fifty-five distinct defects from off-the-
shelf programs totaling over 5.1 million lines of code and involving over 10,000 test cases. In
addition to infinite loops, segmentation faults, and bugs that produce incorrect output, we have
repaired stack- and heap-based buffer overflows, non-overflow denial of service attacks, integer
overflows, and format string vulnerabilities in at little as 36 minutes each, on average [3, Sec. V–
A].

3. Methods, Assumptions, and Procedures
In this section we describe GenProg, an automated program repair method that searches for re-
pairs to off-the-shelf programs (Section 2.1). We highlight the important algorithmic and repre-
sentational changes since our pre-award preliminary work [17] that enable scalability to millions
of lines of code, improve performance, and facilitate implementation on resource-constrained en-
vironments such as embedded systems or commodity cloud computing services (Section 2.1). We
also describe our approach to dynamic invariant generation and program interface inference (Sec-
tion 2.2). Finally, we summarize our work to apply GenProg to the domain of embedded software
(Section 2.3).

3.1. Program Repair via Genetic Programming
GenProg uses genetic programming (GP) [18], an iterated stochastic search technique, to

search for program repairs. The search space of possible repairs is infinitely large, and GenProg
employs five strategies to render the search tractable: (1) coarse-grained, statement-level patches to

3
Approved for Public Release; Distribution Unlimited.



Input: Full fitness predicate FullFitness : Patch → B
Input: Sampled fitness SampleFit : Patch → R
Input: Mutation operator mutate : Patch → Patch
Input: Crossover operator crossover : Patch2 → Patch2

Input: Parameter PopSize
Output: Patch that passes FullFitness

1: let Pop ← map mutate over PopSize copies of 〈 〉
2: repeat
3: let parents ← tournSelect(Pop, Popsize, SampleFit)
4: let offspr ← map crossover over parents , pairwise
5: Pop ← map mutate over parents ∪ offspr
6: until ∃ candidate ∈ Pop. FullFitness(candidate)
7: return candidate

Figure 1: High-level pseudocode for GenProg repair technique main loop.

reduce search space size; (2) fault localization to focus edit locations; (3) existing code to provide
the seed of new repairs; (4) fitness approximation to reduce required test suite evaluations; and (5)
parallelism to obtain results faster.

High-level pseudocode for GenProg’s main GP loop is shown in Figure 1. Fitness is measured
as a weighted average of the positive (i.e., initially passing, encoding required functionality) and
negative (i.e., initially failing, encoding a defect) test cases. The goal is to produce a candidate
patch that causes the original program to pass all test cases. In this paper, each individual, or vari-
ant, is represented as a repair patch [19], stored as a sequence of AST edit operations parameterized
by node numbers (e.g., Replace(81, 44)〉; see Section 3.1.1.).

Given a program and a test suite (i.e., positive and negative test cases), we localize the fault
(Section 3.1.3.) and compute context-sensitive information to guide the search for repairs (Sec-
tion 3.1.4.) based on program structure and test case coverage. The functions SampleFit and
FullFitness evaluate variant fitness (Section 3.1.2.) by applying candidate patches to the original
program to produce a modified program that is evaluated on test cases. The operators mutate and
crossover are defined in Section 3.1.5. and Section 3.1.6. Both generate new patches to be tested.

The search begins by constructing and evaluating a population of random patches. Line 1 of
Figure 1 initializes the population by independently mutating copies of the empty patch. Lines 2–6
correspond to one iteration or generation of the algorithm. On Line 3, tournament selection [20]
selects from the incoming population, with replacement, parent individuals based on fitness. By
analogy with genetic “crossover” events, parents are taken pairwise at random to exchange pieces
of their representation; two parents produce two offspring (Section 3.1.6.). Each parent and each
offspring is mutated once (Section 3.1.5.) and the result forms the incoming population for the next
iteration. The GP loop terminates if a variant passes all test cases, or when resources are exhausted
(i.e., too much time or too many generations elapse). We refer to one execution of the algorithm
described in Figure 1 as a trial. Multiple trials are run in parallel, each initialized with a distinct
random seed.

4
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The rest of this section describes additional algorithmic details, with emphasis on the impor-
tant improvements on our preliminary work, including: (1) a new patch-based representation (2)
large-scale use of a sampling fitness function at the individual variant level, (3) fix localization
to augment fault localization, (4) and novel mutation and crossover operators to dovetail with the
patch representation.

3.1.1. Patch Representation

Over the course of this work we improved GenProg’s representation for candidate repairs. Each
variant is a patch, represented as sequence of edit operations (cf. [19]). In the original, pre-award
algorithm, each individual was represented by its entire abstract syntax tree (AST) combined with
a weighted execution path [17], which does not scale to memory-constrained environments such as
embedded systems or commodity cloud computing settings. For example, for at least 35% of the
defects considered in this evaluation, a population of 40–80 ASTs did not fit in the memory avail-
able for our main evaluation setup. In our dataset, half of all human-produced patches were 25 lines
or less. Thus, two unrelated variants might differ by only 2× 25 lines, with all other AST nodes in
common. Representing individuals as patches avoids storing redundant copies of untouched lines.
This formulation influences the mutation and crossover operators, discussed below.

3.1.2. Fitness Evaluation

To evaluate the fitness of a large space of candidate patches efficiently, we exploit the fact that GP
performs well with noisy fitness functions [21]. The function SampleFit applies a candidate patch
to the original program and evaluates the result on a random sample of the positive tests as well as
all of the negative test cases. SampleFit chooses a different test suite sample each time it is called.
FullFitness evaluates to true if the candidate patch, when applied to the original program, passes
all of the test cases. For efficiency, only variants that maximize SampleFit are fully tested on the
entire test suite. The final fitness of a variant is the weighted sum of the number of tests that are
passed, where negative tests are weighted twice as heavily as the positive tests.

3.1.3. Fault Localization

GenProg focuses repair efforts on statements that are visited by the negative test cases, biased
heavily towards those that are not also visited by positive test cases [22]. For a given program,
defect, set of tests T , test evaluation function Pass : T → B, and set of statements visited when
evaluating a test Visited : T → P(Stmt), we define the fault localization function faultloc :
Stmt → R to be:

faultloc(s) =

 0 ∀t ∈ T. s 6∈ Visited(t)
1.0 ∀t ∈ T. s ∈ Visited(t) =⇒ ¬Pass(t)
0.1 otherwise

That is, a statement never visited by any test case has zero weight, a statement visited only on a
bug-inducing test case has high (1.0) weight, and statements covered by both bug-inducing and

5
Approved for Public Release; Distribution Unlimited.



normal tests have moderate (0.1) weights (this strategy follows pre-award work [17, Sec. 3.2]). On
the defects considered here, the total weight of possible fault locations averages 110. Other fault
localization schemes could potentially be plugged directly into GenProg [23].

3.1.4. Fix Localization

We introduce the term fix localization (or fix space) to refer to the source of insertion/replacement
code, and explore ways to improve fix localization beyond blind random choice. As a start, we
restrict inserted code to that which includes variables that are in-scope at the destination (so the
result compiles) and that are visited by at least one test case (because we hypothesize that certain
common behavior may be correct). For a given program and defect we define the function fixloc :
Stmt → P(Stmt) as follows:

fixloc(d) =

{
s
∃t ∈ T. s ∈ Visited(t) ∧
VarsUsed(s) ⊆ InScope(d)

}
The pre-award approach chose an AST node randomly from the entire program. As a result, an
average of 32% of generated variants did not compile [17], usually due to type checking or scoping
issues. For larger programs with long compilation times, this is a significant overhead. For the
defects considered here, less than 10% of the variants failed to compile using the fix localization
function just defined.

3.1.5. Mutation Operator

Pre-award work used three types of mutation: delete, insert, and swap. However, we found swap
to be up to an order of magnitude less successful than the other two [24, Tab. 2]. We thus remove
swap in favor of a new operator replace (equivalent to a delete followed by an insert to the same
location). In a single mutation, a destination statement d is chosen from the fault localization
space (randomly, by weight). With equiprobability GenProg either deletes d (i.e., replaces it with
the empty block), inserts another source statement s before d (chosen randomly from fixloc(d)),
or replaces d with another statement s (chosen randomly from fixloc(d)). As in previous work,
inserted code is taken from elsewhere in the same program, but could also be adapted from learned
specifications described correct program behavior. This decision reduces the search space size by
leveraging the intuition that programs contain the seeds of their own repairs.

3.1.6. Crossover Operator

The crossover operator combines partial solutions, helping the search avoid local optima. We
propose a new patch subset crossover operator, a variation of the well-known uniform crossover
operator [25] tailored for the program repair domain. It takes as input two parents p and q rep-
resented as ordered lists of edits (Section 3.1.1.). The first (resp. second) offspring is created by
appending p to q (resp. q to p) and then removing each element with independent probability one-
half. This operator has the advantage of allowing parents that both include edits to similar ranges
of the program (e.g., parent p inserts B after A and parent q inserts C after A) to pass any of those

6
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edits along to their offspring. Previous uses of a one-point crossover operator on the fault localiza-
tion space did not allow for such recombination (e.g., each offspring could only receive one edit to
statement A).

3.2. Specification Inference
The study of program specifications or invariants (i.e., relations among variables that are guaran-
teed to hold at certain locations in a program) is a cornerstone of program analysis [26, 27, 28] and
has been a major research area since the 1970s [29, 30, 31, 27, 32, 33]. Invariants can be identified
using static or dynamic analysis. Static analysis is typically computationally expensive but more
likely to provide provably sound results. Dynamic analysis is usually efficient, but its results are
not guaranteed to be correct because the discovered properties may not generalize to all program
traces. Nonetheless, dynamic invariant analysis is useful in practice because of its scalability and
the help it can provide in program refactoring, documenting and debugging [34, 35, 36].

3.2.1. Nonlinear and Array Invariants

Nonlinear polynomial properties are essential to the success of many scientific, engineering and
safety-critical applications. For example, Astrée [37, 38], a successful program analyzer used
to verify the absence of run-time errors in Airbus avionic systems, implements a static analysis
involving the ellipsoid abstract domain to represent and reason about a class of quadratic inequality
invariants.6 Nonlinear invariants have also been found useful for the analysis of hybrid systems [39,
40].

Arrays are a widely used data structure that is fundamental to many programs. For example, in
C.A.R. Hoare’s seminal 1971 paper on algorithm verification, Proof of a program: FIND, the over-
all goal is to prove an array invariant that lies at the heart of the correctness of quicksort [41, p.40].
Fixed-size arrays are also present in many systems programs, and proper analysis is often critical
for security (e.g., buffer overruns). Finally, the ubiquity of arrays in general software engineering
makes reasoning about arrays crucial for performance (e.g., for bounds check elimination [42]).

Daikon [34] is a well-known dynamic analysis system that detects invariants from program
traces. However, Daikon supports only a limited form of linear relations among program variables
and arrays. For example, Daikon cannot discover (i) that the location of the chosen pivot in binary
search is l + u − 1 ≤ 2p ≤ l + u as these inequalities involve three variables, (ii) that the gcd of
x, y is nx + my because this is a nonlinear polynomial, (iii) the equation v = 2x + 3y + 4z + 5
because it involves four variables, or (iv) the relation A[i] = B[C[i]] because it is a nested array
relation. It is thus difficult to fully capture and reason about the semantics of programs that can
only be expressed in such forms of invariants with Daikon.

To address the issues outlined above and improve dynamic invariant detection, we combined
mathematical techniques that have not been previously applied to the problem: equation solving,
polyhedra, and SMT (Satisfiability Modulo Theories) solving. More specifically, we focused on

6The ellipsoid domain used by Astrée [38] to examine the Airbus system is expressed in the quadratic form x2 +
axy + by2 ≤ k, where 0 < b < 1 and a2 < 4b.
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Figure 2: Automatic Generation of Dynamic Invariants. The generator finds different types of
invariants from program traces. The post-processing step removes redundant and spurious invari-
ants.

generating invariants expressed as nonlinear arithmetic relations among program variables and
invariants on relations among complex data structures such as multi-dimensional arrays.

We developed a technique to find equalities among nonlinear polynomials of program variables
using equation solving. We find nonlinear inequalities by constructing convex polyhedra. When
additional inputs from the user are available, our approach can also deduce new inequalities from
previously obtained equality relations.

We also developed a technique to find linear equalities among arrays by first finding equalities
among array elements and then identifying the relations among array indices from the obtained
equalities. We find nested array relations by performing reachability analysis. Our analysis has
potentially high time complexity, and thus we encode the problem as a satisfiability problem,
which can be efficiently solved with an SMT solver.

We view dynamic invariant detection as two separate subproblems: (i) fixing a priori can-
didate invariants over program variables and then (ii) ruling out invalidated candidates based on
observed traces of program variables. We hypothesize that a key reason that previous approaches
do not scale to nonlinear invariants or array invariants is that they enumerate candidates based on
fixed templates (e.g., linear equations involving at most three variables). Such eager enumeration
strategies do not scale to higher-degree polynomials or array invariants due to the large number
of possible candidates. By contrast, our approach lazily explores the search space based on the
structure of the trace data. It considers candidate invariants based on the traces available, rather
than an eager enumeration. This insight, coupled with tools such as equation and SMT solvers,
allows us to find human-relevant nonlinear and array invariants in nontrivial programs efficiently.
We implemented a prototype tool, depicted in Figure 2, based on this approach.
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3.2.2. Nonlinear Invariant Example

Invariants are typically placed at the entries and exits of functions corresponding to pre- and post-
conditions and/or the heads of loops corresponding to loop invariants. Given a location l, the pro-
gram is instrumented to trace the values of the variables in scope at l. The instrumented program
is then run against a set of inputs to obtain the traces.

1 int cohendiv(int x, int y){
2 int q = 0; // quotient
3 int r = x; // remainder
4 while (r >= y) {
5 int a = 1;
6 int b = y;
7 while (r >= 2 * b) {
8 // Invariant Location
9 // Invs: b=ya, x=qy+r, r >= 2ya
10 a = 2 * a;
11 b = 2 * b;
12 }
13 r = r - b;
14 q = q + a;
15 }
16 return q;
17 }

Figure 3: Cohen’s integer division algorithm.

The program in Figure 3 implements the well-known integer division algorithm by Cohen [43],
which takes as input two integers x, y and returns the integer q as the quotient of x and y. We
consider invariants at location l, the head of the inner while loop on line 9. There are six variables
{a, b, q, r, x, y} in scope at l. Table 1 consists of five sets of values representing traces obtained
from the variables at l for inputs {x = 15, y = 2} and {x = 4, y = 1}.

Table 1: Traces of the Cohen program on inputs {x = 15, y = 2} and {x = 4, y = 1}.
x y a b q r

15 2 1 2 0 15
15 2 2 4 0 15
15 2 1 2 4 7

4 1 1 1 0 4
4 1 2 2 0 4

We want to obtain the polynomial invariants over the variables {a, b, q, r, x, y} based on such
traces. The documented invariants {b = ya, x = qy + r, r ≥ 2ya}, which cannot be identified
with current dynamic invariant methods, describe precisely the semantics of the inner while loop
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in Cohen’s algorithm.7 The full details of our algorithms have been published in the International
Conference on Software Engineering [4].

3.2.3. Program Interface Invariants

Professional software developers spend most of their time trying to understand code [44, 45].
Maintaining and evolving high-quality documentation is crucial to help developers understand
and modify code [46, 47]. In reports by and studies of developers, use examples related to an
application program interface (API) have been found to be a key learning resource [48, 49, 50, 51,
52, 53]. That is, documenting how to use an API is preferable to simply documenting the function
of each of its components.

One study found that the greatest obstacle to learning an API in practice is “insufficient or
inadequate examples.” [54] We developed an algorithm that automatically generates API usage
examples. Given a data-type and software corpus (i.e., a library of programs that make use of the
data-type), our approach extracts abstract use-models for the data-type and renders them in a form
suitable for use by humans as documentation or suitable for mechanical use as specifications.

The state of the art in automated support for usage examples is known as code search. Typi-
cally, the problem is phrased as one of ranking concrete code snippets on criteria such as “repre-
sentativeness” and “conciseness.” In 2009, Zhong et al. described a technique called MAPO for
mining and recommending example code snippets [55]. More recently, Kim et al. presented a tool
called EXOADOCS which also finds and ranks code examples for the purpose of supplementing
JAVADOC embedded examples [56]. Such examples can be useful, but they are very different from
human-written examples. Mined examples often contain extraneous statements, even when slicing
is employed. In addition, they often lack the context required to explicate the material they present.
In general, mined examples are long, complex, and difficult to understand and use. Good human-
written examples, on the other hand, often present only the information needed to understand the
API and are free of superfluous context. Human written documentation has two important disad-
vantages, however: it requires a significant human effort to create, and is thus often not created;
and it may not be representative of, or up-to-date with, actual use.

We developed a technique for automatically synthesizing human-readable API usage examples
which are well-typed and representative. We adapted techniques from specification mining [57] to
model API uses as graphs describing method call sequences, annotated with control flow informa-
tion. We use data-flow analysis to extract important details about each use beyond the sequence of
method calls, such as how the type was initialized and how return values are used. Our approach
then abstracts concrete uses into high-level examples. Because a single data-type may have multi-
ple common use scenarios, we use clustering to discover and coalesce related usage patterns before
expressing them as documentation.

Our generated examples display a number of important advantages over both state-of-the-art
code search and human written examples, both of which we compare to in a human study. Unlike
mined examples, our generated examples contain only the program statements needed to demon-

7The invariant x = qy + r asserts that the dividend x equals to the divisor y times the quotient q plus the remainder
r.
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strate the target behavior. Where concrete examples can be needlessly specific, our examples adopt
the most common types and names for identifiers. Unlike human-written examples, our examples
are, by construction, well-formed syntactically and well-typed. Where previous approaches to
code ranking adopted simple heuristics based on length and a simple use count (e.g., [58, 59]), our
abstract examples are structured and generated with a robust and well-defined notion of representa-
tiveness. Because our approach is fully automatic, the examples are also cheap to construct and can
be always up-to-date. Additionally, their well-formedness properties make them ideal automated
tasks like for code completion [60] or program repair.

3.2.4. Program Inference Example

In modern software development, API documentation tools such as JAVADOC have become in-
creasingly prevalent, and variants exist for most languages (e.g., PYTHONDOC, OCAMLDOC,
etc.). One of the principles of JAVADOC is “including examples for developers” [61]. Not all ex-
amples are created equal, however. Features such as conciseness, representativeness, well-chosen
variable names, correct control flow, and abstraction all relate to documentation quality.

Consider Java’s BufferedReader class, which provides a buffering wrapper around a lower-
level, non-buffered stream. The human-written usage example included in the official Java Devel-
opment Kit, version 6 [62] is:
1 BufferedReader in =
2 new BufferedReader(new FileReader("foo.in"));

While this example has the merit of being concise, it shows only how to create a BufferedReader,
not how to use one. By contrast, our algorithm produces:
1 FileReader f; //initialized previously
2 BufferedReader br = new BufferedReader(f);
3 while(br.ready()) {
4 String line = br.readLine();
5 //do something with line
6 }
7 br.close();

This exemplifies one common usage pattern for a BufferedReader: repeatedly calling its
readLine method while it remains ready. The variable names br and f were selected from
among the most common human choices for BufferedReader and FileReader, and were syn-
thesized together here: no single usage example need exist that uses both of those names in tan-
dem. In addition, the example also demonstrates the importance of control flow: readLine is
called repeatedly, but only after checking ready. Finally, the //initialized previously and
//do something with line comments indicate points where different human developers would
write different code and highlight the most direct places for a developer to adapt this code example
into an existing setting.

In practice, there is more than one way to use a BufferedReader. Our algorithm can produce
a ranked list of examples based on clusters of representative human usages. The second example
we produce is:
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1 InputStreamReader i; //initialized previously
2 BufferedReader reader = new BufferedReader(i);
3 String s;
4 while ((s = reader.readLine()) != null)
5 //do something with s
6 }
7 reader.close();

This second example shows that other concrete argument types can be used to create a
BufferedReader (e.g., a InputStreamReader can be used as well as a FileReader). In addition,
it shows that there is a different usage pattern that involves always calling readLine but then
checking the return value against null (rather than calling ready). Both of the examples produced
by our algorithm are well-formed and introduce commonly-named, well-typed temporaries for
function arguments and return values.

It is also possible to use code search and slicing techniques to produce API examples. Such
a tool from Kim et al. [56] produces an output consisting of more than 14 lines on the same
BufferedReader query (not shown).

Because they lack information related program semantics, slicing based approaches have trou-
ble distinguishing between relevant an irrelevant details in an example. In the output of Kim et
al.’s tool, a BufferedReader is initialized with System.in. To a new user, it may be difficult to
tell if this argument is necessary, or as in this case, coincidental. Variable names are also often too
specific to the example: String acl_in = br.readLine() (Kim et al.’s tool) is less descriptive
than String line = br. readLine() for the general case. Furthermore, sliced examples do not
type-check out of context and include many irrelevant statements.

Our approach produces high-quality usage example documentation automatically. The details
of our algorithm are published in the International Conference on Software Engineering [5].

3.3. Program Repair for Embedded Software
Few automated repair techniques apply to mobile or embedded systems, instead targeting desktop
client software such as Firefox [63, 64], server software such as MySQL [63] or webservers [21], or
design-by-contract Eiffel programs [65]. This is unfortunate because embedded failures have both
civilian and military implications, ranging from faulty-firmware lawsuits [15] to insurgents hack-
ing Predator drone feeds [16]. One example of a wide-reaching embedded defect was the “Zune
bug”, in which 30GB Microsoft Zune Media Players froze up on the last day of a leap year [66]. In
addition, previous repair techniques that apply to binaries [64] or assembly language [67] have uni-
formly targeted Intel x86, despite “the widespread dominant use of the ARM processor in mobile
and embedded systems” [68].

In this award we extended our automated program repair work to run directly on compiled
assembly files (ASM) and linked ELF executables (ELF). To do so, we introduced a stochastic
method of fault localization appropriate for these lower-level representations. This extension re-
moves the requirement for source code availability and the need for compilation and linking as part
of the search process. It also allows finer-grained (sub-statement) mutations.
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In large programs, it is reasonable to assume that most parts of the program are not related to
a given bug [69]. Accurate fault localization is thus critical for our approach and is an important
factor in running time. Common fault localization methods assume that the bug is likely to be
associated with code executed when operating on the bug-inducing input.

Previous program repair approaches thus record entire sequences or paths [17] of executed
statements using various weighting factors [69]. One key challenge for scaling automated program
repair to embedded systems was to obtain information that is accurate enough to guide automated
repairs but inexpensive enough to be gathered on resource-constrained devices.

Collection of execution information at the ASM and ELF levels requires a new fault local-
ization technique. Many traditional code profilers (e.g., gcov) are language specific and rely on
the insertion of assembly instrumentation. For example, previous attempts to repair the flex
benchmark [17] were C-language specific and stored sequential ordering information from about
443,399 raw statement visits, with the instrumentation increasing the CPU time required by a fac-
tor of 100.4×. Direct extensions such as deterministic sampling of the program counter (e.g., using
ptrace) did not perform adequately in our preliminary work.

To address these constraints, we developed a modified stochastic sampling approach to fault
localization. We first sample the program counter (PC) across multiple executions of the program.
These PC values are then mapped to bytes in the .text section of ELF files and to specific
instructions in ASM files. Stochastic sampling only approximates control flow, and the memory
addresses reported are often insufficient to guide the repair process (e.g., gaps, elided periodic
behavior, etc.). To overcome these limitations, we apply a 1-D Gaussian convolution to the sampled
addresses with a radius of 3 assembly statements. This has the effect of increasing the number of
instructions implicated by each sample. Gaussian convolution is an accepted method of smoothing
data to reduce detail and noise [70].

Our assembly-level representation is a linear sequence of assembly instructions (e.g., as pro-
duced by gcc -S). Candidate repairs are generated through swapping, copying, duplicating or
deleting assembly instructions. Pseudo-operations and assembly directives (e.g., .section
.rodata) are retained but not modified. To reduce search space size, each assembly instruction
is treated atomically, and its operands are not mutated individually. This representation is source
language and architecture agnostic.

The Executable and Linkable Format (ELF) is a popular representation for object and exe-
cutable files on modern Unix operating systems. No access to source code or to any intermediate
stage of the build process are required to manipulate ELF files. The instructions in the .text sec-
tion are treated as a linear array of bytes grouped into whole assembly instructions (i.e., opcodes
with their arguments), possibly of variable width, which are modified by the ELF-level mutation
operations.

As in the ASM representation, each instruction is treated as atomic and opaque. When the size
of the instruction array changes, many parts of the ELF file must be updated. These include (1) the
headers of the .text section; (2) sections subsequent in memory; and (3) all ELF data structures
with pointers to targets which have moved (e.g., .dynsym, .reloc, etc.). Unfortunately, there
are often hard-coded memory addresses included as literals in the .text section. Since there
is no general way to distinguish an integer literal from an address literal, such references are left
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Table 2: Subject C programs, test suites and historical defects. Tests were taken from the most
recent version available in May, 2011.

Program LOC Tests Defects Description

fbc 97,000 773 3 legacy coding
gmp 145,000 146 2 precision math
gzip 491,000 12 5 data compression
libtiff 77,000 78 24 image processing
lighttpd 62,000 295 9 web server
php 1,046,000 8,471 44 web programming
python 407,000 355 11 general coding
wireshark 2,814,000 63 7 packet analyzer

total 5,139,000 10,193 105

unchanged.
The details of our approach for applying automated program repair to embedded systems have

been published in the International Conference on Automated Software Engineering [6].

4. Results and Discussion
In this section we present empirical results related to automated program repair, focusing on ad-
vances made during the period of this award (Section 3.1); specification inferences (Section 3.2);
and the application of program repair to embedded systems (Section 3.3).

4.1. Program Repair
Our goal was to select an unbiased set of programs and defects that can run in our experimental
framework and is indicative of “real-world usage.” We required that subject programs contain suf-
ficient C source code, a version control system, a test suite of reasonable size, and a set of suitable
subject defects. We only used programs that could run without modification under cloud comput-
ing virtualization, which limited us to programs amenable to such environments. We required that
subject defects be reproducible and important. We searched systematically through the program’s
source history, looking for revisions that caused the program to pass test cases that it failed in a
previous revision. Such a scenario corresponds to a human-written repair for the bug correspond-
ing to the failing test case. This approach succeeds even in projects without explicit bug-test links,
and it ensures that benchmark bugs are important enough to merit a human fix and to affect the
program’s test suite.
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Table 3: Repair results: 55 of the 105 defects (52%) were repaired successfully. The total cost of
generating the results in this table was $403.

Defects Cost per Non-Repair Cost Per Repair
Program Repaired Hours US$ Hours US$

fbc 1 / 3 8.52 5.56 6.52 4.08
gmp 1 / 2 9.93 6.61 1.60 0.44
gzip 1 / 5 5.11 3.04 1.41 0.30
libtiff 17 / 24 7.81 5.04 1.05 0.04
lighttpd 5 / 9 10.79 7.25 1.34 0.25
php 28 / 44 13.00 8.80 1.84 0.62
python 1 / 11 13.00 8.80 1.22 0.16
wireshark 1 / 7 13.00 8.80 1.23 0.17

total 55 / 105 11.22h 1.60h

4.1.1. Program Repair: Experiment

Table 2 summarizes the programs used in our experiments. We selected these benchmarks by first
defining predicates for acceptability, and then examining various program repositories to iden-
tify first, acceptable candidate programs that passed the predicates; and second, all reproducible
bugs within those programs identified by searching backwards from the checkout date (late May,
2011). Defects are defined as test case failures fixed by developers in previous versions. The next
subsection formalizes the procedure in more detail.

We ran 10 GenProg trials in parallel for each bug. We chose PopSize = 40 and a maximum
of 10 generations for consistency with previous work [17, Sec. 4.1]. Each individual was mutated
exactly once each generation, crossover is performed once on each set of parents, and 50% of
the population is retained (with mutation) on each generation (known as elitism). Each trial was
terminated after 10 generations, 12 hours, or when another search found a repair, whichever came
first. SampleFit returns 10% of the test suite for all benchmarks.

We used Amazon’s EC2 cloud computing infrastructure for the experiments. Each trial was
given a “high-cpu medium (c1.medium) instance” with two cores and 1.7 GB of memory.8 Simpli-
fying a few details, the virtualization can be purchased as spot instances at $0.074 per hour but with
a one hour start time lag, or as on-demand instances at $0.184 per hour. These August–September
2011 prices summarize CPU, storage and I/O charges.9

8http://aws.amazon.com/ec2/instance-types/
9http://aws.amazon.com/ec2/pricing/
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4.1.2. Program Repair: Results

Table 3 reports results for 105 defects in 5.1 MLOC from 8 subject programs. GenProg success-
fully repaired 55 of the defects (52%), including at least one defect for each subject program.
Successful results are reported under the “Cost per Repair” columns. The remaining 50 are re-
ported under the “Non-Repair”s columns. “Hours” columns report the wall-clock time between
the submission of the repair request and the response, including cloud-computing spot instance
delays. “US$” columns reports the total cost of cloud-computing CPU time and I/O. The 50 “Non-
Repairs” met time or generation limits before a repair was discovered. We report costs in terms
of monetary cost and wall clock time from the start of the request to the final result, recalling that
the process terminates as soon as one parallel search finds a repair. Results are reported for cloud
computing spot instances, and thus include a one-hour start lag but lower CPU-hour costs.

For example, consider the repaired fbc defect, where one of the ten parallel searches found
a repair after 6.52 wall-clock hours. This corresponds to 5.52 hours of cloud computing CPU
time per instance. The total cost for the entire bug repair effort to repair that defect is thus 10 ×
5.52 hours× $0.074/hour = $4.08.

The 55 successful repairs return a result in 1.6 hours each, on average. The 50 unsuccessful
repairs required 11.22 hours each, on average. Unsuccessful repairs that reach the generation limit
(as in the first five benchmarks) take less than 12+1 hours. The total cost for all 105 attempted
repairs is $403, or $7.32 per successful run. These costs could be traded off in various ways.
For example, an organization that valued speed over monetary cost could use on-demand cloud
instances, reducing the average time per repair by 60 minutes to 36 minutes, but increasing the
average cost per successful run from $7.32 to $18.30.

Table 3 does not include time to minimize a repair, an optional, deterministic post-processing
step. This step is a small fraction of the overall cost [17].

We view the successful repair of 55 of 105 defects from programs totaling 5.1 million lines
of code as a very strong result for the power of automated program repair. Similarly, we view
an average per-repair monetary cost of $7.32 as a strong efficiency result. Further details and
additional evaluations for this work are available [3]. In Section 3.2 we present results in specifi-
cation inference that hold out the promise of increasing the fraction of defects that can be repaired
and in Section 3.3 we present results applying these techniques to resource-constrained embedded
systems.

4.2. Specification Inference
We evaluated our dynamic invariant generation prototype on programs taken from a test suite which
we call NLA (nonlinear arithmetic) and an implementation of AES encryption. We evaluated our
approach to inferring program interfaces on 1.3 million lines of Java code.

4.2.1. Dynamic Invariant Generation: Experiment

Our first benchmark, the NLA test suite, consists of 24 programs from various sources collected by
Rodrı́guez-Carbonell and Kapur [71, 72]. These programs implement classic arithmetic algorithms
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that are widely used in programming, such as mult, div, pow, mod, sqrt, gcd, lcm. The programs are
relatively small, about 20 lines of C code each. However, they implement nontrivial mathematical
algorithms and are often used to benchmark static analysis methods. Importantly, the complexity
of our method depends on the size of the traces, the number of variables of interest, and the type of
relations among program variables but not the size of the program per se. Among the 24 programs
from NLA, there are 35 documented nonlinear invariants: 33 are equations and 2 are inequalities.

The second benchmark, AES, is an annotated AES implementation from Yin et al. [73]. It
exemplifies a real-world security-critical application and contains nontrivial array invariants. To
show that functions in the AES implementation conform to the formal AES specification, the
implementation authors inspected and documented the invariants of each function and then fully
verified the result using SPARK Ada and PVS. The annotated invariants represent the manual
effort required to fully functionally verify an AES implementation using axiomatic semantics.
The AES implementation contains 868 lines of Ada code organized into 25 functions containing
30 invariants: 8 simple array relations, 7 nested array relations, 2 linear equations, and 13 other
relations.

Our test programs come with documented invariants at various locations such as loop heads
and function exits. For evaluation purpose, we manually instrumented the source code of the
programs to trace values of all variables in the scope at each program location containing a known
invariant. Our goal is to find invariants at those locations automatically and compare them to the
human-documented invariants.

The instrumented programs were run against a set of randomly selected inputs. The number of
obtained traces is different across programs and program locations. For example, locations inside
loops may be visited many times while function exits may be visited rarely.

4.2.2. Dynamic Invariant Generation: Results

Table 4 lists our experimental results on 24 programs from NLA, averaged over 20 runs. The
Vars column reports the number of distinct variables in that program’s invariants, Deg reports the
highest polynomial degree in those invariants, Invs reports the number of invariants found by our
approach and the total number of documented invariants, and T reports the average time in seconds
to discover the invariants, including the time to refine the results.

We found all 35 documented nonlinear invariants from the NLA test suite. In most cases, the
results matched the documented invariants exactly as written. Occasionally, we achieved results
that are mathematically equivalent to the documented invariants. For example, the sqrt1 program
has two documented equalities 2a + 1 = t and (a + 1)2 = s, our results give 2a + 1 = t and
t2 + 2t + 1 = 4s, which is equivalent to (a + 1)2 = s by substituting t with 2a + 1. We note that
current dynamic analysis approaches cannot find any of these nonlinear relations.

Table 5 lists our experimental results on 25 functions from AES, averaged over 20 runs. The
Arrs column reports the number of distinct arrays in that program’s invariants, Dim reports the
highest dimension of the arrays in those invariants, Inv Types reports the types of invariant: Simple,
Nested, and Others. N(d) specifies that the nesting depth is d. The driver functions are composed
from other functions in this table.
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Table 4: Experimental results for dynamic invariant generation on 24 programs from NLA.
Program Desc Inv Types Vars Deg Invs T (s)

divbin div eq 5 2 1/1 0.5
cohendiv div eq, ieq 6 2 2/2 1.3
mannadiv int div eq 5 2 1/1 0.3
hard int div eq 6 2 1/1 0.9
sqrt1 sqr eq, ieq 4 2 2/2 0.7
dijkstra sqr eq 5 2 1/1 0.5
freire1 sqr eq 3 2 1/1 0.2
freire2 cubic root eq 4 3 2/2 3.2
cohencube cube eq 5 3 3/3 12.6
euclidex1 gcd eq 10 2 3/3 6.5
euclidex2 gcd eq 8 2 2/2 2.5
euclidex3 gcd eq 12 2 4/4 10.1
lcm1 gcd, lcm eq 6 2 1/1 0.5
lcm2 gcd, lcm eq 6 2 1/1 0.6
prodbin product eq 5 2 1/1 0.3
prod4br product eq 6 3 1/1 8.1
fermat1 divisor eq 5 2 1/1 0.8
fermat2 divisor eq 5 2 1/1 0.4
knuth divisor eq 8 3 1/1 71.5
geo2 geo series eq 4 2 1/1 0.2
geo3 geo series eq 5 3 1/1 3.1
ps2 pow sum eq 3 2 1/1 0.1
ps3 pow sum eq 3 3 1/1 0.3
ps4 pow sum eq 3 4 1/1 0.8

24 programs 2 types 35/35 126.0s

We found all 17 relations that are expressible in our considered forms. The other 13 invariants
do not fall into categories described above and are left for future work. These can be grouped into
three categories: Others1−3. Others1 includes nested array invariants such as A[i] = 4B[6C[. . . ]].
We current do not handle such nested invariants when the elements of A are not exactly nested
in B. Others2 includes array invariants such as A[i] = B[. . . ] where i = {0, 4, 8, 12, . . . } and
A[i′] = B[. . . ] where i′ = {1, 2, 3, 5, 6, 7, 9, 10, 11 . . . }. We require that generated relations such
as A[i] = B[. . . ] hold for all i. Others3 includes array invariants involving functions whose inputs
are arrays, such as f([1, 2]). We only consider functions with scalar inputs such as g(7, 8). We
note that existing dynamic analysis methods cannot find these array relations either.

The manual annotation of AES with sufficient invariants to admit machine-checked full formal
verification was a significant undertaking involving hours of tool-assisted manual effort [73, 74].
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Table 5: Experimental results for dynamic invariant generation on 25 functions from AES.
Function Desc Inv Types Arrs Dim Invs T (s)

multWord mult N(4) 7 2 1/1 3.6
xor2Word xor N(1) 4 2 1/1 0.1
xor3Word xor N(1) 5 3 1/1 0.1
subWord subs N(1) 3 1 1/1 0.4
rotWord shift S 2 1 1/1 0.5
block2State convert S 2 2 1/1 2.0
state2Block convert S 2 2 1/1 11.7
subBytes subs N(1) 3 2 1/1 0.6
invSubByte subs N(1) 3 2 1/1 3.8
shiftRows shift S 2 2 1/1 12.2
invShiftRow shift S 2 2 1/1 8.3
addKey add N(1) 4 2 1/1 0.6
mixCol mult O3 4 2 0/1 -
invMixCol mult O3 4 2 0/1 -
keySetEnc4 driver S,O2 2 2 1/2 4.5
keySetEnc6 driver S,O2 2 2 1/2 6.7
keySetEnc8 driver S,O2 2 2 1/2 10.6
keySetEnc driver O3 4 1 0/1 -
keySetDec driver O3 4 2 0/1 -
keySched1 driver O1 3 2 0/1 -
keySched2 driver O1 3 2 0/1 -
aesKeyEnc driver eq,O3 7 2 1/2 0.1
aesKeyDec driver eq,O3 7 2 1/2 0.1
aesEncrypt driver O3 8 4 0/1 -
aesDecrypt driver O3 8 4 0/1 -

25 functions 6 types 17/30 65.9s

Annotating pre- and postconditions and loop invariants has not been solved in general and is known
to be a key bottleneck in approaches based on axiomatic semantics [75]. It is not surprising that
our approach was unable to discover all relevant invariants; indeed, we view reducing the manual
verification annotation burden by one-half as a strong result.

To summarize, we found all of the invariants under consideration: 100% of the documented
nonlinear invariants in NLA and 17 out of 30 documented invariants in AES. The other 13 in-
variants are beyond the scope of this paper and left for future work. On average, it takes under
five seconds to find the invariants for each program. To the best of our knowledge, no other dy-
namic invariant analysis approaches have analyzed the forms of invariants discussed in this paper.
Additional experiments and information are available [4].
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Table 6: Subject programs used to evaluate API inference.
Name Version Domain kLOC
FindBugs 1.2.1 Code Analysis 154
FreeCol 0.7.2 Game 91
hsqldb 1.8.0 Database 128
iText 2.0.8 PDF utility 145
jEdit 4.2 Word Processing 123
jFreeChart 1.0.6 Data Presenting 170
tvBrowser 2.5.3 TV Guide 138
Weka 3.5.6 Machine Learning 402
XMLUnit 1.1 Unit Testing 10

total 1361

4.2.3. Program Interface Inference: Experiment

In this subsection we evaluate our program interface algorithm and prototype implementation with
one qualitative metric: human acceptability. Running our prototype tool on 1,361k lines of code to
produce example documentation for 35 classes took 73 minutes (about 2 minutes per class). About
95% of this time is spent filtering the corpus and enumerating paths.

Throughout our evaluation we compare the output of our tool to both human-written examples
from the Java SDK and also the EXOADOC tool of Kim et al. [56]. EXOADOC works by leverag-
ing an existing code search engine to find examples of a class. Kim et al. then employ slicing to
extract “semantically relevant” lines. These examples are then clustered and ranked based on Rep-
resentativeness, Conciseness and Correctness properties. EXOADOC has been shown to increase
productivity by as much as 67% in a small study.

Our dataset, shown in Table 6, consists of examples from all 35 classes from standard Java APIs
for which we have one example of each of the three types. Because EXOADOCs are associated with
methods rather than classes, we chose the top example for the most popular method (by static count
of concrete uses in our benchmark set). For our tool, we chose the top (i.e., most representative)
example for each class.

The goal of this study is to quantify the desirability of the output of our tool in comparison to
both human-written examples (from the Java SDK) and the state-of-the-art tool EXOADOC of Kim
et al. [56]. The study involved 154 participants evaluating 35 pairs of API examples.10

For each of the 35 classes from the dataset, the participant is shown the name of the target class
and is randomly shown two of the three documentation types (i.e., ours, EXOADOC, and human-
written). The participant is then required to make a preference evaluation by selecting one option
from a five-element Likert scale: “Strong Preference” for A, “Some Preference” for A, “Neutral”,

10The human study evaluating this algorithm was not funded by this award. Instead, it was funded by National
Science Foundation award CCF 1116289, “SHF: Small: Synthesizing Human-Readable Documentation”. The results
are reproduced here as relevant to the evaluation of the overall specification inference work performed.
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Figure 4: Aggregated results from our human study. The left charts show responses comparing our
tool to human-written examples and the charts on the right compare our tool to the EXOADOC tool
of Kim et al. [56]. The charts on the top categorize all comparisons (e.g., in 60% of comparisons,
our tool output was judged at least as good as human-written examples). The charts on the bottom
reflect the consensus opinion for each example (e.g., 82% of examples produced by our tool were
judged to be at least as good as human-written on average). Examples are grouped by package
(e.g., java.X) and by category of participants (138 ugrads, 16 grads).

“Some Preference” for B, “Strong Preference” for B. If desired, the participant may also choose to
“Skip” the pair.

The study was advertised to students at The University Of Virginia enrolled in a class entitled
Software Development Methods, which places a heavy focus on learning the Java language and its
standard set of APIs. For comparison, 16 computer science graduate students also participated. 179
students participated in total, however, to help preserve data integrity, we removed from considera-
tion the results from 25 undergraduate students who completed the study in less than five minutes.
The average time to complete the study for the remaining 154 participants was 13 minutes.

Participation was voluntary and anonymous. The participants were instructed to “Pretend that
[they] are a programmer or developer who needs to use, or understand how to use, the class.” No
additional guidance was given; participants formed their own opinions about each example.

4.2.4. Program Interface Inference: Results

In total, 154 participants compared 35 example pairs each, producing 5,390 distinct judgments.
The aggregate results are presented in Figure 4. Overall, the output of our tool was judged at
least as good as human written examples over 60% of the time and strictly better than EXOADOC
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in about 75% of cases. For 82% of examples, on average either humans preferred our generated
documentation to human-written examples or had no preference. For 94% of examples, the output
of our tool was preferred to EXOADOCS.

Raw score distributions were very similar between graduate and undergraduate students. How-
ever, taken example by example, grad students had a 20% reduced preference for tool-generated
examples when compared to human-written examples. Nonetheless, both grads and undergrads
judged our generated documentation to be at least as good as gold-standard human-written for
over half of the examples. Compared to EXOADOC, our tool was preferred in almost all cases by
both groups.

Finally, we asked whether “a program that automatically generates examples like these would
be useful?”, and 81% agreed that it would be either “Useful” or “Very Useful.” Further information
and additional evaluations are available [5].

Taken together, the results in Section 3.2 suggest that we can infer previously-untouched classes
of invariants, including half of those needed for formal verification, in one example, and that our
inference results are as good as what humans would write over half of the time. This work provides
significant confidence that specification inference is positioned to augment and inform automated
program repair.

4.3. Program Repair for Embedded Software
This subsection presents results of an empirical evaluation of program repair at the ASM and ELF
levels. The results show the following:

1. Stochastic fault localization closely approximates the deterministic approach. (Section 4.3.1.)

2. Repair success at the ASM and ELF representation levels is similar to that reported previ-
ously for ASTs. (Section 4.3.2.)

3. Our ASM and ELF representations, together with our stochastic fault localization method,
have small resource footprints, suitable for running on mobile and embedded devices. (Sec-
tion 4.3.3.)

Table 7 lists the benchmark defective programs evaluated in this paper. The benchmarks are
generally taken from pre-award work on AST-level repair [17] for the purposes of direct compari-
son; merge sort was added to evaluate the stochastic fault localization algorithm on a full-coverage
test suite. Each program comes equipped with a regression test suite, used to validate candidate
repairs, and a special test case indicating a defect (bug). These programs have on average 3.69
more assembly instructions and 9.52 more ELF bytes than lines of source code. Sizes are given
for each representation: Lines of code (LOC) in the original C source, LOC in the assembly files
(x86, as produced by gcc -S), and size (in bytes) of the .text sections of the x86 ELF files.

We used the following genetic algorithm parameters: population size popsize = 1000; maxi-
mum number of fitness evaluations before terminating a trial evals = 5000, mutation rate mut =
1.0 per individual per generation and crossover rate cross = 0.5 crossovers per indivdiual per
generation.
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Figure 5: Fault localization in program address space. The stochastic results are shown in light
green; they identify similar program regions as the previous deterministic approach, shown in dark
red.

Experiments were run either on a machine with 2.2 GHz AMD Opteron processors and 120 GB
of memory or on Nokia N900 smartphones, each of which features a 600 MHz ARM Cortex-A8
CPU and 256 MB of mobile DDR memory, as appropriate.

4.3.1. Embedded Software: Fault Localization Results

Our stochastic fault localization method samples the contents of the program counter and processes
the results. We used oprofile [76], a system-wide profiler for Linux systems, to sample the PC.
We then mapped these sampled memory addresses back to individual bytes in the code sections of
ELF executables and to instructions in assembly files and process with Gaussian convolution.

We evaluated the resulting fault localization in the context of program repair in Section 4.3.2.
and also explicitly compared the results of the stochastic and deterministic approaches. For this
comparison we used merge sort, which is small and exhaustively tested (i.e., 100% statement
and branch coverage), as well as deroff, which is larger with less-complete test coverage. The
stochastic and deterministic traces taken from the failing test cases of both programs are shown
overlaid in Figure 5.

Ten stochastic samples and one deterministic sample were taken for each program. We find
very high correlations of 0.96 (merge) and 0.65 (deroff) between stochastic samples, indicating
consistency across samples. We find high correlations of 0.61 (merge) and 0.38 (deroff) between
the naı̈ve stochastic (no convolution) and deterministic samples, which increase to 0.71 (merge)
and 0.48 (deroff) after Gaussian convolution, indicating the post-processing step is important.

4.3.2. Embedded Software: Repair Success Results

Table 8 compares ASM and ELF to the AST representation used previously [17]. The “Memory”
column reports the memory usage when performing repairs for each combination of program and
representation. Our Nokia smartphones have 256+768 MB of RAM plus swap. In this embedded
environment 8 of 12 programs can be repaired at the AST level compared to 9 at the ASM level
and 10 at the ELF level. “Runtime” reports the average time per successful repair in seconds.
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The “% Success” column reports the number of runs out of 100 that successfully found a repair
within the first 5000 test suite evaluations disregarding memory limitations. Differences among
the average percentage of successful repairs across representations are not large, with values of
65.83%, 70.75% and 78.17% for ELF ASM and AST respectively. “Expected Fitness Evaluations”
counts the expected number of evaluations per repair (see Equation 1).

Some bugs are more amenable to repair at particular levels of representation. For example,
atris and units are easily repaired at the AST level, indent is most easily repaired at the
ASM level and merge sort is most easily repaired at the ASM and ELF levels. We discuss the
atris and merge repairs in greater detail.

The atris repair involves deleting a call to getenv. At the AST level this requires a single
deletion, while at the ASM level the deletion of three contiguous instructions is needed. There are
no nearby jump instructions, making it impossible to remove these three instructions with a single
mutation. The intermediate variants (with some subset of the three deleted) have 0 fitness. The
ELF representation can repair this defect, and all five repairs found were unique, but each involved
from 3 to 7 accumulated mutation operations.

The merge repair involves replacing an if statement with its else branch. At the AST level,
this is most easily accomplished by swapping the if with its else, which is 1 of 4900 possible
swap mutations. At the ELF level, deletion of a single comparison instruction (one of 218 possible
deletions) suffices to repair the program.

The “Expected Fitness Evaluations” column reports the expected number of fitness evaluations
per repair.

expected = fits + (runs − 1)× fitf where (1)
fits = average evaluations per successful run
fitf = average evaluations per failed run
runs = average runs per success

Because repair time is dominated by fitness evaluation (including compilation at the AST level
and linking at the ASM level) and that for all programs but units (an outlier in this regard)
the expected number of evaluations is roughly equivalent between levels of representation, we
conclude that, when repairs are possible, the repair process is as efficient at the ASM and ELF
levels as at the AST level.

4.3.3. Embedded Software: Resource Requirements Results

We desire a repair algorithm that can run within the resource constraints of mobile and embedded
devices. We consider three key constraints: CPU usage and runtime, memory requirements, and
disk space requirements. Table 8 highlights results.

CPU Usage. Runtime costs associated with genetic algorithm bookkeeping (e.g., sorting vari-
ants by fitness, choosing random numbers, etc.) are typically dwarfed by the cost of evaluating
fitness. For example, on an average run of deroff, bookkeeping accounted for only 13.5% of
the runtime. The primary costs are computing fault localization information fitness evaluation
(including time to compile and assemble variants, which varies by representation).
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Our stochastic fault localization requires from 50 to 5000 runs of the original unmodified
program. Importantly, the absolute running time determines the number of required executions,
so slow programs require fewer executions and only quickly terminating programs require more
than 50 executions. By contrast, the previous AST-level work requires compilation of an instru-
mented program with a 100× slowdown per run, previous executable-level approaches introduce a
300× slowdown to compute richer fault localization information [64, Sec 4.4], and ptrace full
deterministic tracing incurs a 1200× slowdown. Our fault localization approach is an order-of-
magnitude faster than these previous approaches.

For post-localization repair runtime, ASM and ELF have lower fitness evaluation costs than
AST. Compared to AST-level approaches, ASM does not require compilation and ELF does not
require assembling or linking, both reducing runtime. However, for the same program, the search
space for ASM and ELF is larger than the corresponding source-level search space (see size
columns in Table 7). If the time to conduct a repair at the AST level is 1.0, on average ASM
repairs take 7.22× and ELF repairs take 0.38×. The ELF improvement is particularly striking, but
both are positive results.

Memory. Memory utilization is especially important for mobile and embedded devices. Pre-
vious approaches report results on repairs conducted on server machines with 8 GB [64] to 16 GB
of ram [17]. By contrast, the Nokia N900 smartphones we consider as indicative use cases have
256 MB Mobile DDR, an order of magnitude less.

Table 8 reports the memory used (in MB) for repairs at the AST, ASM and ELF representations.
We note that ASM requires only about 53.91% of the memory of a source-based representation,
while ELF is significantly smaller, requiring only 14.29% of the memory. We attribute the low
requirements for ELF to the ELF parser we used, which only stores the .text section of ELF
binaries in memory.

Disk space. Beyond the subject program and its test suite, disk usage was composed of two
main elements: the evolutionary repair tool itself and the build suite of the program to be repaired.
The size of these requirements varies greatly with the level of representation. For example, repairs
at the ELF level do not require that the build tool-chain of the original program be supplied. This
facilitates local repair of embedded programs which are often cross-compiled and cannot be built
locally. We review the disk space requirements at all three levels.

AST requires the source code and build tool chain of the original program. Our baseline compar-
ison, the pre-award GenProg AST-level evolutionary repair tool [17], takes 23 MB on disk
(including the tool itself, the gcc compiler and header files, the gas assembler, and the ld

linker).

ASM requires only the assembly code, assembler, and linker. This is a significantly lighter build
requirement. Our ASM representation is currently incorporated into the AST repair frame-
work [17] to ensure a controlled environment for comparison. It requires 12 MB on disk
(including the tool itself, the gas assembler, and the ld linker).

ELF requires only a compiled executable. Like ASM, our prototype is a modification of the AST-
level repair framework, replacing the source-code parser with an ELF parser. It requires only
1.10 MB on disk, an order of magnitude decrease compared to AST.
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As one concrete example of the resource limitations of embedded devices, the Nokia N900
smartphone ships with 256 MB of NAND flash storage (holding the Maemo Linux kernel and
bootloader, etc., with about 100 MB free), and a 32 GB eMMC store holding a 2GB ext3 par-
tition, 768 MB of swap, and about 27 GB of free space in a vfat partition. The vfat partition
is unmounted and exported whenever a USB cable is attached to the device, making it unsuitable
for a deployed system repair tool. Linux packages install to the NAND flash by default, quickly
exhausting space. Repartitioning is possible but uncommon for casual users. Thus, even though
the device claims 32 GB of storage, significantly less is available for a stable repair tool. These are
all merely implementation details, but we claim that such exceptions and a desire to minimize the
on-disk footprint are indicative of many mobile and embedded devices.

5. Conclusions
Software maintenance remains critical and expensive. The work partially supported by this award
focused on improving GenProg, an automated program repair technique for reducing the costs
associated with software defects. Over the period of this award, advances in GenProg’s represen-
tations and algorithms (Section 2.1) led to a full-scale, systematic evaluation using 105 bugs in
over 5 million lines of code involving over 10,000 test cases. Using commodity cloud-computing
infrastructure, the approach was able to repair over half of the defects encountered for $8 each
(Section 3.1). We worked to augment GenProg by automatically inferring key program invariants
and specifications: both dynamically, for non-linear invariants and array invariants, and statically,
for program interface invariants (Section 2.2). Our approach is the first to tackle non-linear and
array invariants, and our experimental results suggest that we can find half of the invariants needed
for formal verification and that our invariants are comparable in quality to what humans would
write (Section 3.2). Finally, we developed techniques for scaling GenProg to resource-constrained
embedded systems (Section 2.3). Our approach works well at the assembly level as well as on
program binaries and requires only 15% of the RAM and 5% of the disk space required by our
pre-award work. Taken together, we feel that these results make a strong case for the applicability
of automated program repair to new domains.
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Miné, David Monniaux, and Xavier Rival. A static analyzer for large safety-critical software.
In Programming Languages Design and Implementation, pages 196–207, 2003.

[39] Mardavij Roozbehani, Eric Feron, and Alexandre Megrestki. Modeling, optimization and
computation for software verification. In Hybrid Systems: Computation and Control, pages
606–622, 2005.

[40] Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna. Scalable analysis of linear
systems using mathematical programming. In Verification, Model Checking and Abstract
Interpretation, pages 25–41, 2005.

[41] C. A. R. Hoare. Proof of a program: Find. Communication ACM, 14:39–45, January 1971.

[42] Rastislav Bodı́k, Rajiv Gupta, and Vivek Sarkar. ABCD: eliminating array bounds checks on
demand. In Programming Language Design and Implementation, pages 321–333, 2000.

[43] Edward Cohen. Programming in the 1990s: an introduction to the calculation of programs.
Springer-Verlag, 1990.

[44] Peter Hallam. What do programmers really do anyway? In Microsoft Developer Network —
C# Compiler, Jan 2006.

31
Approved for Public Release; Distribution Unlimited.



[45] Shari Lawrence Pfleeger. Software Engineering: Theory and Practice. Prentice Hall, NJ,
USA, 2001.

[46] Sergio Cozzetti B. de Souza, Nicolas Anquetil, and Káthia M. de Oliveira. A study of the
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6. List of Symbols, Abbreviations and Acronyms
• AES. Advanced Encryption Standard. A common mission-critical cryptographic algorithm.

• API. Application program interface. A set of functions and variables by which different
software modules communicate. The correct use of an API is governed by rules (i.e., a
specification).

• ASM. Assembly language program. A list of human-readable, architecture-specific machine
instructions. Such a program can be assembled and linked to create a binary executable.

• AST. Abstract syntax tree. An internal representation for the human-readable source code
(e.g., C, Java, ADA) of a program.

• ELF. Executable and linking format. A common container format for binary executable
programs. No source code or assembly code is retained at this stage.

• GenProg. An automated program repair approach that is the subject of this award. It is based
on genetic programming.

• LOC. Lines of Code. A common metric for software size or complexity.

• NLA. Non-Linear Arithmetic. A suite of programs that have non-trivial invariants, suitable
for evaluating inference approaches.

• SMT. Satisfiability Modulo Theories. A general constraint system that is similar to, but more
elaborate than, boolean satisfiability. Many off-the-shelf SMT solvers exist.
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